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On the symmetries and invariants of the harmonic oscillator 

T J Gordon 
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Leicestershire LE11 3TU, UK 

Received 5 March 1985. in final form 24 June 1985 

Abstract. A general formulation of Noether’s theorem is applied to the equation of a 
harmonic oscillator. The definition of symmetry includes the usual Lie invariance as a 
special case and (unlike standard formulations) generates the full set of invariants (i.e. 
gives closure under functional composition). The analysis for a time-dependent oscillator 
casts doubt on the importance of a known class of invariants. The existence of a Lagrangian 
function is shown to be inessential to the analysis. 

1. Introduction 

The simple harmonic oscillator 

x +  0 2 x  = 0 

represents a special case of the Klein-Gordon equation 

(0 - m2)4 = 0 (1.2) 

where the spatial dimension has been reduced to zero. An (infinitesimal) ‘symmetry’ 
of (1.1) is defined here as any function A(x, x, t )  which satisfies A +  wzA = 0 (see below). 
It was shown previously (Gordon 1981) that for non-zero space dimensions (and 
non-zero m )  that the infinitesimal symmetries of (1.2) are restricted to linear functions 
in 4 and its derivatives; correspondingly, conserved currents are essentially at most 
bilinear. For (1.1) this breaks down owing to the following: if Ql(x, x, t )  and Qz(x, x, t )  
are invariants of (1 .l) then so are each of the continuous infinity of functions which 
have the form 

This ‘functional composition’ property distinguishes (1.1) from (1.2). 
The interest here lies not so much in establishing the form of the invariants 

(obviously there are at most two functionally independent invariants here) but in the 
formalism used to associate invariants with symmetries. 

In 0 2 a generalised Noether theorem is described and applied to (1.1); it is shown 
that all invariants are generated (on an equal footing) in this way. In 0 3 this is 
contrasted with the standard approach where a set of five ‘preferred’ invariants are 
generated. Sections 4 and 5 consider generalisations to ( l . l ) ,  and 0 6 contains a 
discussion and brief summary. 
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2. Noether’s theorem 

2.1. Specialised formulation 

The author’s formulation of Noether’s theorem (Gordon 1984) may be specialised to 
a single second-order ordinary differential equation 

f ( x , x , x ,  t ) = O  (2.1) 

in the following way. Define the linearised operator f 

where D = a(x, x, t )  is arbitrary and 

(2.3) 

is the (total) time derivative operator. It is assumed that second- (and higher-) order 
derivatives are eliminated from (2.2) and (2.3) using (2.1). The adjoint operator p is 
then 

Note that (2.1) may be derived from a Lagrangian function if and only i f?  =f 
Let Q(x, 1, t )  be an invariant of (2.1), i.e. D,Q = 0 or 

D,Q = Af (2.4) 

where the identity sign indicates that no use is made of (2.1) to eliminate x. A(x, 1, t )  
is the Lagrange multiplier which determines Q up to the addition of an arbitrary 
constant. The ‘infinitesimal’ form of Q, regarded as a linear operator, is 

@(+I := ( a Q / a x ) a +  (aQ/ax)D,a. (2.5) 

Noether’s theorem takes the following appearance: 

D,Q Af+D,o[(+] = Af[a]ap[A] = 0. 

The first ‘j’ follows from the linearisation of (2.4). This cannot normally be extended 
to ‘a’ since an integrability condition is necessary for Q to exist. The second 3’ 
states that the Lagrange multiplier satisfies the adjoint linearised equation. For a 
Lagrangian theory this is the same as the linearised equation itself and it is seen in 
§ 3 that the standard Lie invariance arises as a special case. The ‘e’ states that an 
‘infinitesimal’ invariant exists for each solution of p[A] = 0;  it is easily verified that 
d may be defined by 

&(+I = A ( a f / a x ) a + ( A  af /ai)E,(+ (2.6) 
where (+B,T := ~ D , T  - 7Dp. The integrability condition for Q(x, x, t )  is easily found 
to be 

(2.7) 
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2.2. Completeness 

Clearly there are at most two functionally independent invariants for (2.1), and 
correspondingly at most two linearly independent solutions to ?[A] = 0. More pre- 
cisely, if A I  and A 2  are the Lagrange multipliers of Q1 and Q2 respectively, then from 
(1.3) the Lagrange multiplier of Q is 

A = ( a r ; / a Q , ) ~ ~  + ( a F / a Q d ~ ~ .  
Generally if A I  and A 2  satisfy ?[A] = 0, then so does 

A = Q3Al Q4A2 

where Q3 and Q4 are themselves invariants of (2.1), 

2.3. Simple harmonic oscillator 

Applying the above theory to ( l . l ) ,  a Lagrange multiplier satisfies 

ji'+w'A=O (2.9) 

(A = D:A ). Equation (2.6) becomes 

d[a] = A b -  AU (2.10) 

and the integrability condition (2.7) reduces to 

aA/ax+aA/ax=o. (2.11) 

Two obvious solutions to (2.9) are A 1  =xl(t) ,  Az=x2(t) where x1 and x2 are any 
independent pair of solutions of ( 1 . 1 )  (e.g. x1 =sin wt, x2=cos ut). Then (2.11) is 
trivially satisfied and integration of (2.10) yields 

Q1 = XI( t )X -XI( t)x Q2 = x2( t)X - X Z (  t ) x .  (2.12) 

From the above any third invariant is of the form (1.3). 
It is interesting to seek solutions that are linear homogeneous in x and X, 

A = a ( t ) x + p ( t ) X .  (2.13) 

Equations (2.9) and (2.11) imply 

6 = 2Jfi fi+2cY=o. (2.14) 

Therefore 6 +4w2a = 0 and a solution LY = -2iw e2iwf is chosen. From (2.14), /3 = 
+ c  where c is a constant and hence 2 e2iwf 

A = cx + 2 e2iwf (x - iwx). (2.15) 

Integration of (2.10) then gives 

Q = cE(x, X)+ q2 
where E(x ,X)=~(X2+w2x2)  is the energy and Q'=eiwf(x-iwx) is of the form (2.12). 
The only novel result obtained from (2.13) is the energy, which has the useful property 
of being independent of t. 

The Lagrange multiplier for E is A = x. 
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3. Comparison with standard results 

The standard theory of the Lie invariance of (1.1) was described by Wulfman and 
Wybourne (1976): under an infinitesimal transformation x -* x + ax, t -+ t + S t  

ax = ((x, t)Sa St = r ] (x ,  t)Sa (3.1) 
where Sa is an infinitesimal parameter, and 

= ( a/ax+ 7 a/at  (3.2) 

is the infinitesimal generator. % is extended to %" in a natural way to determine the 
change induced in any function f(x, x, x, t ) ,  and the condition for an infinitesimal 
transformation to be a symmetry of (1.1) is that 

"U"( x + w ZX) = 0. (3.3) 

In the present approach such a transformation would be considered to take place with 
t unchanged; this is not restrictive at all since (3.1) may then be replaced by 

S ; c = ~ x - x ~ t  & = o  
which yields the infinitesimal generator A alax with 

A =((x, t ) - iT(X,  t) .  (3.4) 
It is not hard to show that for (3.4), (2.9) is identical to (3.3). Therefore the present 
approach includes the standard one as a special case (i.e. when A(x, x, t) is linear in x). 

Although the restriction that A be of the form (3.4) may make sense from the 
geometrical point of view, it has no role to play in the association of invariants with 
symmetries. Indeed it is essentially the restriction that A be linear in x that allows 
Lutsky (1978) to obtain a set of five invariants for (1.1); in view of the above results 
it is hard to believe that any special physical significance should be attached to these. 

4. The time-dependent oscillator 

In view of recent interest in the time-dependent oscillator 

X + R 2 x = 0  

(Lewis 1968, Eliezer and Gray 1976, Prince and Eliezer 1980, Colegrave and Abdalla 
1983) where R( t )  is time-dependent, it is worth extending the present analysis. It is 
easily verified that (2.9)-(2.11) are unchanged, except that w is replaced by R(  t)-this 
will be assumed in such equation references in this section. 

It is not hard to show that for h( t )  f 0, the only solution A ( x ,  x) to (2.9) is A = x; 
all other solutions include explicit time dependence. Since (2.11) does not hold, no 
finite invariant exists of the form Q(x, x), and indeed this can also be verified directly 
from 0 = 0. In that case a complete solution to the problem of finding invariants is 
given by (taking arbitrary functions of) Q1 and Q2 of (2.12), but where x,(t) and x2(t) 
may not be explicitly written down without prior knowledge of the function n(t). 
Equation (2.12) may be inverted to give 

x=(X,(t)QZ-X2(t)Ql)/W (4.1) 

x = (xl(t)Q2--xz(f)Q,)/ w (4.2) 
where W := x , x 2  - x2x1 is the (non-zero, time-independent) Wronskian. 
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One may also seek solutions to (2.9) in the form (2.13), 

A = a ( t ) x + p ( t ) X  

but as in 0 2, any invariants generated will be functions of Q, and Q2 (the results are 
interesting only for comparison with earlier work). Following the procedure set out 
in 0 2, we obtain (after a suitable rescaling of p if necessary) 

p + R2p = kp-3 (4.3) 

where p = p2 (cf Prince and Eliezer 1980), Q = -p,j and k = 0 or 1. Thus from (2.13) 

A = p2X - ppx 

which integrates via (2.10) to 

Q = :( px - +;kp2x2( + constant). (4.4) 
If k = 1 then (4.4) is the invariant described by Lewis (1968) (see also Eliezer and 
Gray 1976, Prince and Eliezer 1980); this may be expressed in terms of Q, and Q2 as 
follows. As is well known, any solution p(  t )  of (4.3) (k  = 1) may be expressed in the 
form 

p2=Ax:+Bx~+2Cxlx2  (4.5) 
where x,(t) and xz(t) are independent solutions of (1.1) and the constants A, B, C 
satisfy AB - C2 = W - 2  (e.g. Prince and Eliezer 1980). Substitution of (4.1), (4.2) and 
(4.5) into (4.4) then yields (after some algebra) 

Q Lewis . =-( AQ:+BQ;+2CQiQ2). 

It is hard to believe that this particular quadratic function of Q1 and Q2 is of any more 
fundamental significance than (say) Q = (9,  + Q2)'. The use of (4.3) ( k  = 1) merely 
complicates a simple situation. 

Once again it seems pointless to pick out special classes of invariant unless it is 
because some particular combination Q = F( Q1, Qz) has some desirable property (such 
as the absence of explicit time dependence which is impossible here). 

5. Non-Lagrangian oscillators 

5.1. Damped oscillators 

The damped oscillator 

x + 2bx + x = 0 

( b  = constant; w = 1 has been set by a suitable choice of time unit) does not possess 
a Lagrangian and conventionally no association between symmetries and invariants is 
made. The equation ?[A]  = 0 becomes 

A-2bA+A = O  
which can be solved by 

A, = exp b, t 

where b, = b f ( b2 - 1)1'2. Equation (2.6) is now 
d[ a] = 2 bAa + A u  - CTA 



188 T J Gordon 

which integrates to give 

Q* = (26A, - A*)x  + A*X. 

Explicit time dependence may be eliminated by choosing the combination 

Q$ (X + b-x) b- o=-= 
Q!+ (x+b+x)b+  

The absence of a Lagrangian has not hindered the analysis! 

5.2. A nonlinear oscillator 

The nonlinear equation 

x+ x2x = 0 

may be regarded as an oscillator which has a ‘spring constant’ equal to the square of 
the instantaneous velocity. ?[A] = 0 reduces to 

A - 2xXA + (2x2 - l ) X 2 A  = 0. (5.1) 

A solution is given by A = x-’ which integrates via (2.6) to give 

= fx’  + log x. 

Again the path from A to Q is straightforward although it must be admitted that solving 
(5.1) (generally ?[A] = 0) may not always be as easy as it is here. Bearing (2.3) in 
mind, it is seen that (5.1) is a linear partial differential equation for A(x, x, t )  whose 
solution set is closed under taking linear combinations of the type (2.8). 

6. Discussion and summary 

Any reasonable Noether theorem associating symmetries with invariants should gener- 
ate an uncountable infinity of invariants in order to give closure under functional 
composition. Although various definitions of a ‘symmetry’ are possible, in the present 
context this simple requirement is fundamental. It is worth noting that other authors 
have also identified the need for arbitrary functions in the context of the symmetries 
of the harmonic oscillator (e.g. Schwarz 1983). 

Thus it has been argued that an (infinitesimal) symmetry should be defined as any 
solution ~ ( x ,  x, t )  of f[a] = 0. The standard case of invariance under a geometrical 
transformation in the (x, t )  plane yields such a solution via its generator, as in (3.2) 
and (3.4). When? is self-adjoint each symmetry yields at least an infinitesimal invariant, 
and closure under functional composition is guaranteed. 

When f is not self-adjoint, a symmetry does not immediately lead to an invariant, 
since it is solutions to ?[A] = 0 that are required. However, it has been shown that 
the analysis is not hindered provided that such solutions can be found. 

A further possibility is that a fixed linear mapping L: U +  A may be defined such 
that ?[U] = O + p [ A ]  = 0. This is indeed the case for Hamiltonian equations (Gordon 
1984). 
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